9,158 research outputs found

    New orbital ephemerides for the dipping source 4U 1323-619: constraining the distance to the source

    Get PDF
    4U 1323-619 is a low mass X-ray binary system that shows type I X-ray bursts and dips. The most accurate estimation of the orbital period is 2.941923(36) hrs and a distance from the source that is lower than 11 kpc has been proposed. We aim to obtain the orbital ephemeris, the orbital period of the system, as well as its derivative to compare the observed luminosity with that predicted by the theory of secular evolution. We took the advantage of about 26 years of X-ray data and grouped the selected observations when close in time. We folded the light curves and used the timing technique, obtaining 12 dip arrival times. We fit the delays of the dip arrival times both with a linear and a quadratic function. We locate 4U 1323-619 within a circular area centred at RA (J2000)= 201.6543\degree and DEC (J2000)= -62.1358\degree with an associated error of 0.0002\degree, and confirm the detection of the IR counterpart already discussed in literature. We estimate an orbital period of P=2.9419156(6) hrs compatible with the estimations that are present in the literature, but with an accuracy ten times higher. We also obtain a constraint on the orbital period derivative for the first time, estimating P˙=(8±13)×10−12\dot{P}=(8\pm 13)\times 10^{-12} s/s. Assuming that the companion star is in thermal equilibrium in the lower main sequence, and is a neutron star of 1.4 M⊙_{\odot}, we infer a mass of 0.28±\pm0.03 M⊙_{\odot} for the companion star. Assuming a distance of 10 kpc, we obtained a luminosity of (4.3±\pm0.5)×1036\times 10^{36} erg s−1^{-1}, which is not in agreement with what is predicted by the theory of secular evolution. Using a 3D extinction map of the Ks_{s} radiation in our Galaxy, we obtain a distance of 4.2−0.7+0.8^{+0.8}_{-0.7} kpc at 68\% confidence level. (Abridged)Comment: 10 pages, 8 figures, accepted for publication in Astronomy & Astrophysic

    Study of the reflection spectrum of the LMXB 4U 1702-429

    Get PDF
    The source 4U 1702-429 (Ara X-1) is a low-mass X-ray binary system hosting a neutron star. Albeit the source is quite bright ( ∼1037\sim10^{37} erg s−1^{-1}) its broadband spectrum has never been studied. Neither dips nor eclipses have been observed in the light curve suggesting that its inclination angle is smaller than 60∘^{\circ}.We analysed the broadband spectrum of 4U 1702-429 in the 0.3-60 keV energy range, using XMM-Newton and INTEGRAL data, to constrain its Compton reflection component if it is present. After excluding the three time intervals in which three type-I X-ray bursts occurred, we fitted the joint XMM-Newton and INTEGRAL spectra obtained from simultaneous observations. A broad emission line at 6.7 keV and two absorption edges at 0.87 and 8.82 keV were detected. We found that a self-consistent reflection model fits the 0.3-60 keV spectrum well. The broadband continuum is composed of an emission component originating from the inner region of the accretion disc, a Comptonised direct emission coming from a corona with an electron temperature of 2.63±0.062.63 \pm 0.06 keV and an optical depth τ=13.6±0.2\tau=13.6 \pm 0.2, and, finally, a reflection component. The best-fit indicates that the broad emission line and the absorption edge at 8.82 keV, both associated with the presence of \ion{Fe}{xxv} ions, are produced by reflection in the region above the disc with a ionisation parameter of Log(ξ)≃2.7Log(\xi) \simeq 2.7. We have inferred that the inner radius, where the broad emission line originates, is 64−15+5264^{+52}_{-15} km, and the inner radius of the accretion disc is 39−8+639^{+6}_{-8} km. (Abridged)Comment: 9 pages, 9 figures, accepted for publication by A&

    The puzzling symbiotic X-ray system 4U1700+24

    Full text link
    Symbiotic X-ray binaries form a subclass of low-mass X-ray binary systems consisting of a neutron star accreting material from a red giant donor star via stellar wind or Roche lobe overflow. Only a few confirmed members are currently known; 4U 1700+24 is a good candidate as it is a relatively bright X-ray object, possibly associated with the late-type star V934 Her. We analysed the archive {\it XMM}-Newton and Swift/XRT observations of 4U 1700+24 in order to have a uniform high-energy (0.3−100.3-10 keV) view of the source. We confirmed the existence of a red-shifted O VIII Ly-α\alpha transition (already observed in the 2002 {\it XMM}-Newton data) in the high-resolution spectra collected via the RGS instruments. The red-shift of the line is found in all the analysed observations and, on average, it was estimated to be ≃0.009\simeq 0.009. We also observed a modulation of the centroid energy of the line on short time scales (a few days) and discuss the observations in the framework of different scenarios. If the modulation is due to the gravitational red-shift of the neutron star, it might arise from a sudden re-organization of the emitting XX-ray matter on the scale of a few hundreds of km. Alternatively, we are witnessing a uni-polar jet of matter (with typical velocity of 1000−40001000-4000 km s−1^{-1}) possibly emitted by the neutron star in an almost face-on system. The second possibility seems to be required by the apparent lack of any modulation in the observed XX-ray light curve. We also note also that the low-resolution spectra (both {\it XMM}-Newton and Swift/XRT in the 0.3−100.3-10 keV band) show the existence of a black body radiation emitted by a region (possibly associated with the neutron star polar cap) with typical size from a few tens to hundreds of meters. The size of this spot-like region reduces as the overall luminosity of 4U 1700+24 decreases.Comment: In press on A&

    Intraventricular Transplantation of Engineered Neuronal Precursors for In Vivo Neuroarchitecture Studies

    Get PDF
    Gene control of neuronal cytoarchitecture is currently the subject of intensive investigation. Described here is a simple method developed to study in vivo gene control of neocortical projection neuron morphology. This method is based on (1) in vitro lentiviral engineering of neuronal precursors as "test" and "control" cells, (2) their co-transplantation into wild-type brains, and (3) paired morphometric evaluation of their neuronal derivatives. Specifically, E12.5 pallial precursors from panneuronal, genetically labeled donors, are employed for this purpose. They are engineered to take advantage of selected promoters and tetON/OFF technology, and they are free-hand transplanted into neonatal lateral ventricles. Later, upon immunofluorescence profiling of recipient brains, silhouettes of transplanted neurons are fed into NeurphologyJ open source software, their morphometric parameters are extracted, and average length and branching index are calculated. Compared to other methods, this one offers three main advantages: it permits achieving of fine control of transgene expression at affordable costs, it only requires basic surgical skills, and it provides statistically reliable results upon analysis of a limited number of animals. Because of its design, however, it is not adequate to address non cell-autonomous control of neuroarchitecture. Moreover, it should be preferably used to investigate neurite morphology control after completion of neuronal migration. In its present formulation, this method is exquisitely tuned to investigate gene control of glutamatergic neocortical neuron architecture. Taking advantage of transgenic lines expressing EGFP in other specific neural cell types, it can be re-purposed to address gene control of their architecture

    Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities

    Full text link
    Many complex networks display a mesoscopic structure with groups of nodes sharing many links with the other nodes in their group and comparatively few with nodes of different groups. This feature is known as community structure and encodes precious information about the organization and the function of the nodes. Many algorithms have been proposed but it is not yet clear how they should be tested. Recently we have proposed a general class of undirected and unweighted benchmark graphs, with heterogenous distributions of node degree and community size. An increasing attention has been recently devoted to develop algorithms able to consider the direction and the weight of the links, which require suitable benchmark graphs for testing. In this paper we extend the basic ideas behind our previous benchmark to generate directed and weighted networks with built-in community structure. We also consider the possibility that nodes belong to more communities, a feature occurring in real systems, like, e. g., social networks. As a practical application, we show how modularity optimization performs on our new benchmark.Comment: 9 pages, 13 figures. Final version published in Physical Review E. The code to create the benchmark graphs can be freely downloaded from http://santo.fortunato.googlepages.com/inthepress

    Percolation Effects in Very High Energy Cosmic Rays

    Full text link
    Most QCD models of high energy collisions predict that the inelasticity KK is an increasing function of the energy. We argue that, due to percolation of strings, this behaviour will change and, at s≃104\sqrt{s} \simeq 10^4 GeV, the inelasticity will start to decrease with the energy. This has straightforward consequences in high energy cosmic ray physics: 1) the relative depth of the shower maximum Xˉ\bar{X} grows faster with energy above the knee; 2) the energy measurements of ground array experiments at GZK energies could be overestimated.Comment: Correction of equation (19) and figures 3 and 4. 4 pages, 4 figure
    • …
    corecore